

UNIVERSITÀ DEGLI STUDI DI MILANO

Phantom-based comparative analysis of Contrast Enhanced Mammography systems: image quality and performance evaluation

Giulia Bruschi

Origgi Daniela, De Marco Paolo, Gallo Salvatore

Tesi di Laurea Magistrale

Milano, 29 Novembre 2024

Scopo del lavoro

Caratterizzare e valutare le performance di 4 diversi mammografi dotati della modalità Contrast Enhanced Mammography (CEM) in termini di dose, qualità immagine e risposta al variare della concentrazione del mezzo di contrasto.

Indagare la possibilità di quantificare la concentrazione del mezzo di contrasto nelle lesioni mammarie.

INDICE

- Introduzione alle tecniche di imaging in senologia
- Tecnica CEM
- I mammografi e il fantoccio
- Confronto dosi
- Image quality
- Confronto della risposta al variare dello spessore
- Applicazione clinica
- Conclusioni

Mammografia

Tumore al seno:

- 2.3 milioni di nuovi casi e quasi 700 mila morti nel 2020.
- -> Importanza dello screening

<u>Imaging</u> con scopi diversi:

- Prevenzione
- Diagnosi
- Pianificazione trattamenti o operazioni

Tecniche di imaging:

- Full Field Digital Mammography (FFDM)
- Ecografia
- Risonanza magnetica
- Tomosintesi (DBT)

<u>Mammografia 2D (FFDM)</u>

- Mammografo
- Compressione
- Radiazioni ionizzanti \rightarrow Sì

<u>Ecografia</u>

- Sonda ecografica
- Radiazioni ionizzanti \rightarrow No
- Rate falsi positivi/negativi non trascurabile

Breast MRI

- Risonanza magnetica
- Mezzo di contrasto a base di gadolinio
- Radiazioni ionizzanti \rightarrow No
- Elevata specificità
- Lunghi tempi di acquisizione
- Difficile accesso

Tomosintesi DBT

- Mammografo
- Compressione
- Radiazioni ionizzanti \rightarrow Sì
- Facile localizzazione

- Mezzo di contrasto (mdc): iodio
- 2 proiezioni: low energy (LE) and high energy (HE)
- LE: minore attenuazione dello iodio
- HE: massima attenuazione
- Enhancement della lesione
- Ricombinazione -> immagine sottratta ES

$$ES = \ln(HE) - w \cdot \ln(LE)$$

- Mezzo di contrasto (mdc): iodio
- 2 proiezioni: low energy (LE) and high energy (HE)
- LE: minore attenuazione dello iodio
- HE: massima attenuazione
- Enhancement della lesione
- Ricombinazione -> immagine sottratta ES

$$ES = \ln(HE) - w \cdot \ln(LE)$$

В

- Mezzo di contrasto (mdc): iodio
- 2 proiezioni: low energy (LE) and high energy (HE)
- LE: minore attenuazione dello iodio
- HE: massima attenuazione
- Enhancement della lesione
- Ricombinazione -> immagine sottratta ES

$$ES = \ln(HE) - w \cdot \ln(LE)$$

- Mezzo di contrasto (mdc): iodio
- 2 proiezioni: low energy (LE) and high energy (HE)
- LE: minore attenuazione dello iodio
- HE: massima attenuazione
- Enhancement della lesione
- Ricombinazione -> immagine sottratta ES

 $ES = \ln(HE) - w \cdot \ln(LE)$

Vantaggi:

- Localizzazione
- Caratterizzazione (specificità)
- Facile accesso
- Basso costo
- Breve acquisizione

<u>Svantaggi:</u>

- Dose potenzialmente più elevata
- Impiego del mdc

Materiali e metodi: i mammografi

- FujiFilm Amulet Innovality (Fujifilm)
- Hologic Selenia 3Dimensions (Hologic)
- GE Senograph Pristina (GE)
- IMS Giotto Class (IMS)

	FujiFilm	Hologic	GE healthcare	IMS
Model	Amulet Innovality	Selenia 3Dimensions	Senograph Pristina	Giotto class
Installed in	2018	2020	2018	2022
Anode	W	W	Rh, Mo	W
Filtration (thickness in mm)	Rh, Al, Cu	Rh, Al, Ag, Cu	Ag, Mo, Cu	Ag, Cu
Detector type	a-Se	a-Se	Csl	a-Se
Detector size (mm)	240 X 300	240 X 300	240 X 300	240 X 300
Pixel dimensions (mm)	0.05	0.07	0.1	0.085
AEC mode	High, normal, low mode	8 livelli di compensazione	STD, STD+, Dose-	Standard, dose, contrast

Fantoccio CIRS modello 022

- Base magnetica
- Due strati con bordi smussati s=10mm
- Strato con inserti s=10mm

Concentration	0.2, 0.5, 1.0, 2.0 mg/cm ²
Size	Ø = 10 mm; s=10 mm

Fantoccio CIRS modello 022

- Base magnetica
- Due strati con bordi smussati s=10mm
- Strato con inserti s=10mm

Concentration	0.2, 0.5, 1.0, 2.0 mg/cm ²
Size	Ø = 10 mm; s=10 mm

Fantoccio CIRS modello 022

- Base magnetica
- Due strati con bordi smussati s=10mm
- Strato con inserti s=10mm

 Concentration
 0.2, 0.5, 1.0, 2.0 mg/cm²

 Size
 Ø = 10 mm; s=10 mm

Fantoccio CIRS modello 022

- Base magnetica
- Due strati con bordi smussati s=10mm
- Strato con inserti s=10mm

Concentration	0.2, 0.5, 1.0, 2.0 mg/cm ²
Size	Ø = 10 mm; s=10 mm

Fantoccio CIRS modello 022

- Base magnetica
- Due strati con bordi smussati s=10mm
- Strato con inserti s=10mm

Concentration	0.2, 0.5, 1.0, 2.0 mg/cm ²
Size	Ø = 10 mm; s=10 mm

Materiali e metodi: acquisizioni

Set up delle misure:

• Modalità clinica, acquisizione FFDM e CEM

→Confronto Average Glandular Dose (AGD, mGy)
 →Confronto qualità immagine

Risultati: confronto dosi

- Dose **FFDM** diversa da dose **LE** -> spettri/parametri espositivi diversi.
- Hologic e IMS: Dose tot CEM > dose FFDM.
- Fujifilm e GE: Dose tot CEM < dose FFDM.

Materiali e metodi: image quality

SDNR (Signal-Difference-to-Noise Ratio)

Quantifica il contrasto

Valutato per ogni inserto

 $SDNR = \frac{MPV_{dtl} - MPV_{bkg}}{SD_{bgk}}$ FOM (Figure Of Merit)

Grandezza indipendente dalla dose Valutato sull'immagine intera

$$FOM = \frac{\Sigma SDNR^2}{N \cdot AGD}$$

29/11/2024

Risultati: Image quality

SDNR

- Immagini energy subtraction (ES).
- Comportamento analogo in tutti i set-up analizzati.
- Hologic valori maggiori di SDNR.

FOM

Hologic valore maggiore di FOM per le immagini ES (ma non per le immagini LE e HE)

Contributo algoritmo di sottrazione

Materiali e metodi: confronto al variare dello spessore

Set up di misura:

- Modalità CEM clinica
- 7 acquisizioni tra 30mm e 80 mm usando strati di PMMA
- → Andamento AGD al variare dello spessore.
- → Studio relazione concentrazione iodio-MPV.

Risultati: confronto AGD al variare dello spessore

<u>Dose totale</u> :

- Aumenta con lo spessore.
- Hologic dose maggiore ad alti spessori.
- GE dose maggiore a bassi spessori.

Risultati: relazione MPV-concentrazione

29/11/2024

Risultati: relazione MPV-concentrazione

29/11/2024

Applicazione clinica: quantificazione del mdc

-> Convertire immagini da MPV a valore di concentrazione di iodio per classificazione lesioni.

Studio preliminare:

63 esami CEM - 35 benigni (B2) - 28 maligni (B5) Mammografo GE

- Test Wilcoxon con p-value 0.0005
- -> Differenza statisticamente significativa.

Concentrazione del mezzo di contrasto per lesioni di tipo B2 e B5

Conclusioni

- Caratterizzazione diversi mammografi in modalità CEM.
 - -> vendors diversi = caratteristiche diverse
- AGD: Hologic dose maggiore, GE e Fujifilm dose minore rispetto a FFDM.
- Image quality: migliori immagini ES Hologic.
- Risposta al variare dello spessore: Fujifilm, GE e Hologic mostrano buona linearità, indipendenza da spessore.
- Possibile applicazione clinica con GE: classificazione delle lesioni tramite quantificazione del mdc.

Questo lavoro preliminare mette in evidenza la possibilità di utilizzare la <u>quantificazione</u> <u>del mezzo di contrasto nelle immagini CEM per una miglior caratterizzazione delle lesioni</u> <u>come supporto alla diagnosi</u>, per ridurre i falsi positivi e il numero delle biopsie.

UNIVERSITÀ DEGLI STUDI DI MILANO

GRAZIEATUTTI

UNIVERSITÀ DEGLI STUDI DI MILANO

BACK-UP

CEM immagini

LE

HE

ES

Average Glandular Dose (AGD)

Definita come

 $AGD = ESAK \cdot g \cdot s \cdot c$

ESAK= entrance surface air kerma (mGy) -> tiene conto del backscattering

- g= fattore correzione per HVL e spessore
- s= fattore correzione per qualità del fascio
- c= fattore correzione per percentuale ghiandolare e spessore

D. R. Dance et al.; Estimation of mean glandular dose for contrast enhanced digital mammography: factors for use with UK, European and IAEA breast dosimetry protocols; 2014; Phys. Med. Biol. 59

Parametri espositivi: confronto

	Fuji	Hologic	GE	Giotto		Fuji	Hologic	GE	Giotto
Anode	W	W	Rh	W	Anode	W	W	Rh	W
Filter	Rh	Rh	Ag	Al	Filter	Rh	Ag	Ag	Al
kV	29	30	34	28	kV	29	30	34	34
mAs	87	123	63	60	mAs	59	121	40	43
HVL	0.540	0.535	0.540	0.486	HVL	0.540	0.575	0.540	0.615
AGD (mGy)	1.31	1.70	2.33	0.901	AGD (mGy)	0.89	2.02	1.49	1.44
ESAK (mGy)	4.22	5.67	8.17	3.31	ESAK (mGy)	2.87	6.59	5.30	4.17

FFDM, 55 mm

LE CESM, 55 mm

	Fuji	Hologic	GE	Giotto
Anode	W	W	Rh	W
Filter	Cu	Cu	Cu	Cu
kV	45	49	49	46
mAs	44	76	115	98
HVL	3.370	3.404	3.310	3.506
AGD (mGy)	0.29	0.65	0.70	0.46
ESAK (mGy)	0.34	0.74	0.87	0.54

HE CESM, 55 mm

Risultati: confronto AGD al variare dello spessore

HE: comportamento anomalo GE

Risultati: linearità al variare dello spessore

	Slope		Intercept		R square
30	-67.0	± 4.7	8585.2	± 4.7	0.985
40	-69.1	±3.6	8587.9	±3.6	0.992
45	-70.6	±5.1	8590.2	±5.1	0.985
50	-69.8	± 2.8	8590.6	± 2.8	0.995
60	-71.9	±3.9	8593.7	±3.9	0.991
70	-73.6	±6.9	8591.3	± 6.8	0.974
80	-75.7	± 4.9	8585.7	±5.0	0.988
Mean	-69.8	±4.2	8588.4	±4.2	0.989

Fujifilm

	Slope		Intercept		R square
30	37.3	±2.0	2006.2	±2.0	0.991
40	38.1	±2.7	2005.1	±2.7	0.985
45	38.5	±2.2	2003.0	±2.2	0.991
50	37.1	±2.0	2002.6	±2.0	0.992
60	37.6	±1.7	2000.2	±1.7	0.994
70	36.9	±1.5	2000.6	±1.6	0.995
80	36.6	± 2.1	2001.0	±2.2	0.990
Mean	37.7	±1.7	2003.1	±1.7	0.994

	Slope		Intercept		R square
30	49.4	±8.7	2079.3	±8.7	0.914
40	53.7	±6.3	2085.0	±6.1	0.960
45	53.8	±6.3	2085.1	±6.1	0.961
50	49.5	±5.0	2085.2	±5.1	0.970
60	45.7	± 4.8	2085.0	±4.9	0.968
70	45.5	±3.8	2085.7	± 4.0	0.979
80	41.8	± 4.2	2084.8	± 4.3	0.970
Mean	47.1	±5.0	2084.7	±5.1	0.967

Hologic

	Slope		Intercept		R square
30	587	±169	11293	±156	0.801
40	586	±143	11710	±135	0.848
45	617	±146	11426	±142	0.857
50	571	±120	11516	±117	0.884
60	537	± 104	11383	± 102	0.898
70	612	± 101	10918	±96	0.924
80	646	±101	10036	±98	0.931
Mean	583	±124	11299	±119	0.881
					•

GΕ

IMS

Applicazione clinica: boxplot

	Min	1st Qu.	Median	Mean	3rd Qu.	Max
B2	0.039	0.509	0.946	0.929	1.238	1.956
B5	0.711	1.097	1.304	1.556	1.893	3.718

Rivelatori diretti vs indiretti

Diretti

- Semiconduttori come a-Se
- -> Conversione diretta
- -> Carica e scarica condensatori
- -> Se di piccole dimensioni migliori rispetto agli indiretti

Indiretti

Scintillatori

- -> Conversione indiretta tramite fotodiodi
- -> Dispersione del segnale

Coefficienti di attenuazione

$$I(x) = I(0) \cdot e^{-\mu x}$$